{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Default Model Example" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Preprocess dataset, build and run default model with a custom infection-to-fatality delay." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Set Theano Environmental Variables for Parallelisation\n" ] } ], "source": [ "from epimodel.preprocessing.data_preprocessor import preprocess_data\n", "from epimodel.pymc3_models.models import DefaultModel\n", "from epimodel.pymc3_models.epi_params import EpidemiologicalParameters, bootstrapped_negbinom_values\n", "import pymc3 as pm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load Data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Dropping NPI Travel Screen/Quarantine\n", "Dropping NPI Travel Bans\n", "Dropping NPI Public Transport Limited\n", "Dropping NPI Internal Movement Limited\n", "Dropping NPI Public Information Campaigns\n", "Dropping NPI Symptomatic Testing\n", "Masking invalid values\n" ] } ], "source": [ "data = preprocess_data('../notebooks/double-entry-data/double_entry_final.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create custom infection to fatality delay using default generation interval" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "example_symptom_to_fatality_delay = {\n", " 'mean_mean': 18,\n", " 'mean_sd': 1,\n", " 'disp_mean': 10,\n", " 'disp_sd': 3,\n", " 'source': 'made up',\n", " 'dist': 'negbinom',\n", " 'notes': 'For example purposes only'\n", " }\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ep = EpidemiologicalParameters()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 250/250 [05:54<00:00, 1.42s/it]\n" ] } ], "source": [ "infection_to_fatality_delay = bootstrapped_negbinom_values([ep.incubation_period,\n", " example_symptom_to_fatality_delay])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "ep.infection_to_fatality_delay = infection_to_fatality_delay[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initialise model with epidemiological parameters" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "with DefaultModel(data) as model:\n", " model.build_model(**ep.get_model_build_dict())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run model\n", "\n", "The notebook features a small number of samples to make documentation compilation proceed quickly. For a serious run, use at least 1000 samples and 500 tuning steps." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Only 100 samples in chain.\n", "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [DeathsDelayDisp, DeathsDelayMean, InitialSizeDeaths_log, CasesDelayDisp, CasesDelayMean, InitialSizeCases_log, PsiDeaths, PsiCases, GrowthDeathsNoise, GrowthCasesNoise, GI_sd, GI_mean, RegionLogR_noise, HyperRVar, CM_Alpha]\n" ] }, { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " 100.00% [800/800 13:21<00:00 Sampling 4 chains, 0 divergences]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Sampling 4 chains for 100 tune and 100 draw iterations (400 + 400 draws total) took 803 seconds.\n", "The rhat statistic is larger than 1.4 for some parameters. The sampler did not converge.\n", "The number of effective samples is smaller than 10% for some parameters.\n" ] } ], "source": [ "with model.model:\n", " model.trace = pm.sample(100, tune=100, cores=4, chains=4, max_treedepth=12, target_accept=0.95)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Trace variables" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['CM_Alpha',\n", " 'HyperRVar_log__',\n", " 'RegionLogR_noise',\n", " 'GI_mean',\n", " 'GI_sd',\n", " 'GrowthCasesNoise',\n", " 'GrowthDeathsNoise',\n", " 'PsiCases_log__',\n", " 'PsiDeaths_log__',\n", " 'InitialSizeCases_log',\n", " 'CasesDelayMean',\n", " 'CasesDelayDisp',\n", " 'InitialSizeDeaths_log',\n", " 'DeathsDelayMean',\n", " 'DeathsDelayDisp',\n", " 'CMReduction',\n", " 'HyperRVar',\n", " 'RegionR',\n", " 'PsiCases',\n", " 'PsiDeaths',\n", " 'InfectedCases',\n", " 'ExpectedCases',\n", " 'InfectedDeaths',\n", " 'ExpectedDeaths']" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.trace.varnames" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 4 }