.. _sensitivity_dispatcher_examples: Sensitivity Dispatcher Examples ------------------------------- The sensitivity dispatcher is a tool for running one or more predefined sensitivity experiments using the dataset ``notebooks/double-entry-data/double_entry_final.csv``. It is intended to use when running experiments on a server. This page gives some example commands to run with it. .. seealso:: The :ref:`sensitivity_dispatcher` documentation. Example 1:: python scripts/sensitivity_dispatcher.py --max_processes 4 --categories region_holdout Masks data for each of the 41 regions, conditions the default model on the masked data and saves predicted infection course of held out region to ``sensitivity_default/region_holdout/{held out region}.pkl`` (note that with 41 runs, this takes a very long time). Example 2:: python scripts/sensitivity_dispatcher.py --max_processes 4 --dry_run --categories npi_leaveout cases_threshold Prints the commands that would be run for the ``npi_leaveout`` and ``cases_threshold`` sensitivity experiments. Output:: Running Univariate Sensitivity Analysis --------------------------------------- Categories: ['npi_leaveout', 'cases_threshold'] You have requested 14 runs Performing Dry Run python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 0 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 1 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 2 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 3 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 4 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 5 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 6 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 7 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 8 python scripts/sensitivity_analysis/npi_leaveout.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag npi_leaveout --npis 6 7 python scripts/sensitivity_analysis/preprocessing_tests.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag cases_threshold --smoothing 1 --deaths_threshold 10 --cases_threshold 10 python scripts/sensitivity_analysis/preprocessing_tests.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag cases_threshold --smoothing 1 --deaths_threshold 10 --cases_threshold 50 python scripts/sensitivity_analysis/preprocessing_tests.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag cases_threshold --smoothing 1 --deaths_threshold 10 --cases_threshold 150 python scripts/sensitivity_analysis/preprocessing_tests.py --model_type default --n_samples 2000 --n_chains 4 --exp_tag cases_threshold --smoothing 1 --deaths_threshold 10 --cases_threshold 200